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A problem with the classical theory
• PDEs don’t apply when a crack or other discontinuity appears.

• This has led to the special techniques of fracture mechanics…
• … which are not always satisfactory.

• Purpose of the peridynamic model:
• Reformulate the basic equations so that they hold everywhere in a body regardless of 

discontinuities.
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Peridynamic* model
• Replace the term in the equation of motion:

• Note the similarity to molecular dynamics.
• f is the force that x’ exerts on x per unit volume squared, 

dependent on:
– relative position in the reference configuration,
– relative displacement,
– (will consider history dependence later).

• Not obtainable by applying the divergence theorem to the 
classical PDE.

• Convenient to assume f vanishes outside some horizon d.
• Require:
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* From the Greek “near” + “force”
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Microelastic materials
• A body is microelastic if f is derivable from a scalar micropotential w, i.e., 

• Interactions (“bonds”) can be thought of as elastic (possibly nonlinear) springs.
• Elastic energy is stored reversibly:

– where the strain energy density is

– and the total strain energy is
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Relation to classical theory
• For a given microelastic material with micropotential w, we can 

define a classical hyperelastic material through

• Can define a stress-like quantity

but this is meaningful only for homogeneous deformations.

• Can show that the peridynamic equation of motion “converges to” 
the classical version in the limit             .
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Damage 
• Damage is introduced at the bond level:

where µ =1 for an intact bond, 0 for a broken bond.
• Bond breakage occurs irreversibly according to some criterion such as exceeding 

a prescribed critical stretch.
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Microelastic membranes
• Equation of motion for a membrane with thickness h:

• Prototype constitutive model for a peridynamic membrane:

where c=constant and the bond stretch is

hence the bond force is

• Can also include dependence on bond length:

bdVxxuufhu
S

+−−= ∫ ')','(&&ρ

S
)2/1()( 22 −+= λλλ cw

ξ
ξη

λ
+

=

1 λ

f

)/1(2)( 3λλ
ξ

λ −=
cf

|)(|)2/1(),( 22 ξλλξλ gcw −+=

h



ses3.ppt • Oct 11, 2004  • frame 8

Prototype microelastic membrane under 
homogeneous deformation

• In a homogeneous deformation, the prototype microelastic 
membrane material with (bond) micropotential

leads to the bulk strain energy density defined by

which comes out to

This is a special case of the Blatz-Ko material

in plane stress.
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λ is bond stretch.
λ1,λ2 are principal 

stretches of F.

Unit circle
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Microelastic membranes with damage
• Prototype material with bond breakage:

where µ changes irreversibly from 1 to 0 
when the bond breaks.

),()/1(2),,( 3 txctxf µλλ
ξ

λ −=

Undeformed circle

Deformed
Broken bonds

ξF
ξ

λ1

σ11
Bulk response

1 λ

f

µ=0
µ=1

Bond response



ses3.ppt • Oct 11, 2004  • frame 10

Energy required to advance a crack
• Adding up the work needed to break all bonds across a line yields the energy release rate:
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Example: 
Tearing of a membrane

• Wrinkles appear due to compressive strains parallel to the crack*.

*Also see Haseganu and Steigmann, Computational Mechanics (1994) for numerical model of wrinkling.
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Example: 
Tearing of a membrane (Emu animation)
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Example: 
Balloon pop

• Fragment strikes a pressurized spherical membrane.
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Example: 
Balloon pop (Emu animation)
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Example: 
Oscillatory crack growth in a membrane

• Blunt tool cuts through a microelastic 
membrane.

• Off-center notch nucleates the crack.
• Oscillations involve friction.

Experimental data of 
Ghatak & Mahadevan, Physical Review Letters 91
(2003) 215507-1; 

also see: 
Roman et. Al., Comptes Rendus Mechanique 331
(2003) 811. Peridynamic model
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Example: 
Oscillatory crack growth (Emu animation)
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Example: 
Tearing of a sheet

• Pull upward on part of a free edge – other 3 edges are fixed.

“Experimental data”
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Example: 
Tearing of a sheet (Emu animation)

• Pull upward on part of a free edge – other 3 edges are fixed.
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Summary

• The peridynamic model is intended to generalize the classical theory to include 
discontinuities, especially cracks.

• Constitutive modeling, including damage, takes place at the bond level.
– Bond response implies a bulk response.

• Fracture occurs spontaneously and can involve complex patterns of crack growth.
• For further information: 

– www.sandia.gov/emu/emu.htm
– Forthcoming paper in International Journal of Non-Linear Mechanics
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